Where in the World

Grade Level: 5-8
Subject Areas: science, math, geography, computer science.

Duration:
Preparation-10

minutes

Activity - 50 minutes
Setting:
classroom
Group Size:
any
Materials:

- copies of "Stopover Locations" data sheets one per student or group of students
- copies of "Sandy and Bailey Travel Log" - one per student or group of students
- Computers with access to Google Earth
- Access to a printer

Skills Used:
mapping, technology (GIS, GPS, internet), Interpreting.

Vocabulary:
GIS, GPS, transmitters, migration, Satellite imagery

Project BEAK Links:

- Adaptations - Migration

OBJECTIVES

- Students learn to use on-line, satellite imagery applications to explore the earth.
- Students learn map reading and navigation and how to visually represent data.
- Students annotate locations and share with others.
- Students will use geographically-referenced information created by others to create maps.
- Students will become familiar with avian research and migration.

Nebraska State Science Standards

4.2.1, 4.4.1, 4.4.3, 8.2.1 8.4.3, 8.4.4, 8.4.5, 8.7.4

BACKGROUND

The long-billed curlew, Numenius americanu, is the largest North American shorebird and one of only 9 species of grassland birds considered endemic (confined, only occurring in) to the Great Plains.

The Numenius name was given to curlews because their long, curved bill resembles the new crescent moon; the Greek word noumenios means "of the new moon."

Long-billed curlew populations have significantly decreased over the past 150 years initially due market hunting and more recently due to habitat loss. Biologists do not have a good handle on the current population size.

During the breeding season, long-billed curlews use short-mixed grass prairie (grassland) habitats with flat to slightly rolling topography. Specifically in Nebraska, the curlews nest in the Sandhills region of the state. In the winter, curlews often use wet pasture habitats, wet mudflats, and intertidal habitats.

Long-billed Curlews are migratory

 shorebirds spending only a small portion of the year in Nebraska, mostly during late-spring to early-summer. Since we do not know much about where Nebraskacurlews go when they leave our fine state, researchers set out to discover just where the curlews stop during migration and where they spend the winter months.

Conserving grassland habitat of the curlews breeding area in Nebraska is an extremely important tactic, but finding out what types if habitats and where the curlews spend the rest of their annual migration cycle is just as crucial to conservation of these interesting birds.

Satellite transmitters are a powerful technology that uses Global Positioning System (GPS) to track migratory birds. Not long ago the large size and heavy weight of the transmitters prevented them from being used on birds. The transmitters would inhibit the bird from flying normally. Now, because new technology has allowed satellite transmitter's size and weight to be significancy reduced, they can be attached to larger birds such as geese, cranes and large shorebirds-like curlews.

During the breeding season of 2009, researchers placed tiny transmitters on two adult female curlews in the Nebraska Sandhills. One curlew is named "Sandy" and the other is "Bailey". The transmitters do not affect the curlews flying ability.

Check out the YouTube video of a Nebraska
long-billed curlew by visiting:
http://www.youtube.com/watch?v=ezOv9VuS1Ww
Once the transmitters are attached, they deliver geographic location data to a special computer program via satellite. The location data is then transferred into latitudinal and longitudinal numbers, which are provided in the spreadsheet contained in this activity (see page 3).

Google Earth is a free, downloadable application that works as a browser for all sorts of information on Earth. It uses satellite imagery to grab, spin, pan, tilt and zoom down to any place on Earth. Students can explore every corner of the globe, measure distances, create their own virtual tours, and share their tours with others. You can also create and download layers of information and view them in geographic context.

To download Google Earth, visit: http://earth.google.com

ACTIVITY: PART 1

1. Download and open a free application of Google Earth onto computer.
2. In the "fly to" area on Google Earth, have students enter the first Latitude and Longitude data point for Bailey from the "Stopover Locations" data sheet located at the end of this activity.
3. Click on the "find" icon (the little magnifying glass). Google Earth will automatically fly to and pin point the location.
4. On the top menu, click on the pin tack button to "create placemark". Name your location Bailey \#1.
5. Continue this sequence until all the data points (latitude and longitude) have been plotted for Bailey. 6. Next, plot the data points for Sandy.

ACTIVITY: PART 2

Once the data points have been plotted for both birds on separate maps, have students use the ruler option and measure the total distance that each bird traveled. Record the distance on the "Sandy and Bailey Travel Log" sheet.

Students can also determine the average distance that each bird traveled given the number of days in route.

Have students complete the "Sandy and Bailey Travel Log" sheet.

EXTENSIONS

- Have students research Sandy and Bailey's wintering grounds. Describe what the wintering areas look like? What is the weather like when Sandy and Bailey are there?
- Discuss with students some of the hazards that birds like Sandy and Bailey face during migration.

ASSESSMENT

- Have students print-out the map they created using Google Earth. Grade for accuracy.
- Have students create a journal for Sandy and Bailey describing what they saw, did, and ate during their journey south.

ADDITIONAL RESOURCES: WEBSITES

- For more details about Sandy and Bailey's stay in Nebraska and their trip to their wintering grounds, visit: http://birdsnebraska.org/
- Google Earth Tip Sheet http://serc.carleton.edu/files/sp/library/google earth/ examples/google-earth-tip-sheet.v2.pdf
- Global Earth Community: Find and Share Virtual Tours http://bbs.keyhole.com/entrance.php
- Juicy Geography
http://www.juicygeography.co.uk/googleearth.htm
- Geospatial21: Geographic Information Systems http://www.geospatial21.org/
- The History and Application of GIS in Education http://spatialnews.geocomm.com/features/ historygisedu/

PERMISSIONS \& CREDITS

- Project BEAK, its content, Teacher Resources and Activities are produced by the Nebraska Partnership for AllBird Conservation; ©2009.

2009 Stopover Locations: Sandy

Date	Time	Latitude	Longitude
June 3	$9: 21$	41.635	-102.444
June 4	$17: 55$	41.679	-102.456
June 5	$23: 09$	41.688	-102.367
June 6	$0: 55$	41.678	-102.381
June 7	$4: 40$	41.636	-102.455
June 8	$12: 50$	41.688	-102.397
June 9	$22: 26$	41.669	-102.360
June 10	$2: 57$	41.677	-102.395
June 11	$4: 58$	41.682	-102.388
June 12	$17: 46$	41.684	-102.381
June 13	$20: 44$	42.036	-102.806
June 14	$0: 59$	42.026	-102.748
June 15	$11: 09$	41.991	-102.180
June 16	$20: 13$	41.838	-102.232
June 17	$22: 31$	41.914	-102.464
June 18	$3: 12$	41.911	-102.513
June 19	$9: 56$	41.798	-102.235
June 19	$11: 13$	41.809	-102.219
June 20	$17: 26$	41.836	-102.266
June 21	$21: 03$	41.840	-102.277
June 22	$1: 05$	41.854	-102.313
June 23	$4: 37$	41.796	-102.288
June 24	$16: 02$	41.940	-102.323
June 25	$23: 30$	41.930	-102.306
June 26	$0: 18$	41.922	-102.360
June 27	$4: 42$	41.950	-102.367
June 28	$18: 00$	35.447	-101.311
June 30	$1: 11$	35.477	-101.289
July 1	$4: 46$	35.436	-101264

Date	Time	Latitude	Longitude
July 3	$21: 53$	24.955	-97.781
July 4	$3: 34$	24.963	-97.785
July 5	$4: 53$	24.969	-97.789
July 6	$15: 13$	24.957	-97.783
July 7	$21: 58$	24.962	-97.774
July 8	$3: 50$	24.964	-97.803
July 9	$8: 08$	24.968	-97.784
July 10	$13: 23$	24.965	-97.780
July 11	$22: 03$	24.962	-97.786
July 12	$2: 29$	24.989	-97.816
July 13	$5: 06$	24.965	-97.794
July 14	$15: 25$	24.974	-97.777
July 15	$22: 07$	24.962	-97.807
July 16	$2: 47$	24.964	-97.770
July 17	$8: 24$	24.967	-97.785
July 18	$13: 28$	24.965	-97.781
July 19	$22: 11$	24.966	-97.792
July 20	$2: 23$	24.958	-97.773
July 21	$7: 42$	24.973	-97.791
July 22	$15: 39$	24.969	-97.778
July 23	$22: 15$	24.982	-97.754
July 24	$2: 31$	24.975	-97.760
July 25	$8: 41$	24.966	-97.780
July 26	$15: 47$	24.971	-97.782
July 27	$21: 18$	24.980	-97.817

2009 Stopover Locations: Bailey

Date	Time	Latitude	Longitude
June 3	$4: 02$	41.69	-102.371
June 4	$12: 12$	41.683	-102.404
June 5	$20: 28$	41.678	-102.383
June 6	$0: 50$	41.814	-102.388
June 7	$4: 08$	41.691	-102.377
June 8	$18: 17$	41.701	-102.439
June 9	$22: 26$	41.743	-102.353
June 10	$0: 06$	41.689	-102.336
June 11	$4: 15$	41.689	-102.381
June 12	$12: 21$	41.678	-102.367
June 13	$20: 44$	41.665	-102.449
June 14	$0: 58$	41.67	-102.399
June 15	$4: 22$	41.683	-102.384
June 16	$12: 25$	41.681	-102.429
June 17	$21: 43$	41.681	-102.419
June 18	$0: 12$	41.681	-102.364
June 19	$4: 28$	39.604	-100.38
June 20	$12: 30$	36.645	-97.441
June 21	$21: 00$	36.685	-97.587
June 22	$1: 04$	36.691	-97.575
June 23	$4: 33$	36.333	-97.566
June 24	$12: 36$	27.939	-97.987
June 25	$21: 44$	26.175	-97.29
June 26	$1: 58$	26.212	-97.446
June 27	$4: 36$	25.79	-97.262
June 28	$12: 40$	25.786	-97.272
June 29	$21: 49$	25.782	-97.27
June 30	$1: 07$	25.793	-97.266
July 1	$4: 38$	25.788	-97.261
July 2	$12: 45$	25.804	-97.29

Date	Time	Latitude	Longitude
July 3	$21: 54$	25.78	-97.296
July 4	$3: 35$	25.78	-97.301
July 5	$4: 49$	25.78	-97.321
July 6	$15: 12$	25.806	-97.293
July 7	$21: 59$	25.789	-97.31
July 8	$3: 42$	25.782	-97.298
July 9	$4: 59$	25.766	-97.293
July 10	$12: 51$	25.665	-97.355
July 11	$20: 47$	25.705	-97.207
July 12	$0: 25$	25.709	-97.218
July 13	$7: 27$	25.696	-97.232
July 14	$12: 56$	25.66	-97.244
July 15	$22: 06$	25.648	-97.299
July 16	$2: 16$	25.657	-97.247
July 17	$8: 25$	25.66	-97.24
July 18	$13: 26$	25.658	-97.29
July 19	$21: 01$	25.655	-97.304
July 20	$2: 26$	25.657	-97.259
July 21	$7: 44$	25.67	-97.252
July 22	$14: 50$	25.601	-97.32
July 23	$22: 16$	25.648	-97.289
July 24	$2: 30$	25.645	-97.262
July 25	$8: 39$	25.666	-97.258
July 26	$13: 33$	25.655	-97.299
July 27	$22: 18$	25.669	-97.26

Sandy and Bailey Travel Log

1. Which bird, Sandy or Bailey, traveled farther?
2. What was Sandy's average flight distance each day? What was Bailey's?
3. Did Sandy or Bailey ever fly "backwards"? What are some possible reasons for a bird to fly "backwards" during their migration?
4. List three possible hazards Sandy and Bailey could have faced on their migration.
5. What major city is closest to Sandy and Bailey's starting point? Their ending point?
6. How many times did Sandy stop-over in a spot for more than one day? Bailey?
